Adapun fitur yang dimiliki Mikrokontroler AT89S51 adalah sebagai berikut :
1. Sebuah CPU (Central Processing Unit) 8 bit yang termasuk keluarga MCS51.
2. Osilator internal dan rangkaian pewaktu, RAM internal 128 byte (on chip).
3. Empat buah Programmable port I/O,masing-masing terdiri atas 8 jalur I/O
4. Dua buah Timer Counter 16 bit.
5. Lima buah jalur interupsi (2 interupsi external dan 3 interupsi internal )
6. Sebuah port serial dengan kontrol serial full duplex UART.
7. Kemampuan melaksanakan operasi perkalian, pembagian dan operasi Boolean (bit)
8. Kecepatan pelaksanaan instruksi per siklus 1 microdetik pada frekuensi clock 12 MHz
9. 4 Kbytes Flash ROM yang dapat diisi dan dihapus sampai 1000 kali
10. In-System Programmable Flash Memory
Dengan keistimewaan diatas, pembuatan alat menggunakan AT89S51
menjadi lebih sederhana dan tidak memerlukan IC pendukung yang banyak.
Sehingga mikrokontroler AT89S51 ini mempunyai keistimewaan dari segi
perangkat keras. Adapun blok diagram dari mikrokontroler 89S51
diperlihatkan pada Gambar 1.1.2. Osilator internal dan rangkaian pewaktu, RAM internal 128 byte (on chip).
3. Empat buah Programmable port I/O,masing-masing terdiri atas 8 jalur I/O
4. Dua buah Timer Counter 16 bit.
5. Lima buah jalur interupsi (2 interupsi external dan 3 interupsi internal )
6. Sebuah port serial dengan kontrol serial full duplex UART.
7. Kemampuan melaksanakan operasi perkalian, pembagian dan operasi Boolean (bit)
8. Kecepatan pelaksanaan instruksi per siklus 1 microdetik pada frekuensi clock 12 MHz
9. 4 Kbytes Flash ROM yang dapat diisi dan dihapus sampai 1000 kali
10. In-System Programmable Flash Memory
Gambar 1.1. Blok diagram dari mikrokontroler 89S51
Konfigurasi Pin Mikrokontroler AT89S51
Susunan pin mikrokontroler AT89S51 diperlihatkan pada Gambar 1.2.
Susunan pin mikrokontroler AT89S51 diperlihatkan pada Gambar 1.2.
Gambar 1.2. Konfigurasi Pin AT89S51
Mikrokontroler AT89S51 memiliki pin
berjumlah 40 dan umumnya dikemas dalam DIP (Dual Inline Package).
Masing-masing pin pada mikrokontroler AT89S51 mempunyai kegunaan sebagai
berikut:
Port 0
Port 0 merupakan port dua fungsi yang berada pada pin 32-39 dari AT89S51. Dalam rancangan sistem sederhana port ini sebagai port I/O serbaguna. Untuk rancangan yang lebih komplek dengan melibatkan memori eksternal jalur ini dimultiplek untuk bus data dan bus alamat.
Port 1
Port 1 disediakan sebagai port I/O dan berada pada pin 1-8. Beberapa pin pada port ini memiliki fungsi khusus yaitu P1.5 (MOSI), P1.6 (MISO), P1.7 (SCK) yang digunakan untuk jalur download program.
Port 2
Port 2 ( pin 21-28 ) merupakan port dua fungsi yaitu sebagai I/O serbaguna, atau sebagai bus alamat byte tinggi untuk rancangan yang melibatkan memori eksternal.
Port 3
Port 3 adalah port dua fungsi yang berada pada pin 10-17, port ini memiliki multi fungsi, seperti yang terdapat pada tabel 1.1 berikut ini :
Port 0
Port 0 merupakan port dua fungsi yang berada pada pin 32-39 dari AT89S51. Dalam rancangan sistem sederhana port ini sebagai port I/O serbaguna. Untuk rancangan yang lebih komplek dengan melibatkan memori eksternal jalur ini dimultiplek untuk bus data dan bus alamat.
Port 1
Port 1 disediakan sebagai port I/O dan berada pada pin 1-8. Beberapa pin pada port ini memiliki fungsi khusus yaitu P1.5 (MOSI), P1.6 (MISO), P1.7 (SCK) yang digunakan untuk jalur download program.
Port 2
Port 2 ( pin 21-28 ) merupakan port dua fungsi yaitu sebagai I/O serbaguna, atau sebagai bus alamat byte tinggi untuk rancangan yang melibatkan memori eksternal.
Port 3
Port 3 adalah port dua fungsi yang berada pada pin 10-17, port ini memiliki multi fungsi, seperti yang terdapat pada tabel 1.1 berikut ini :
BIT NAME BIT ADDRESS ALTERNATE FUNCTION
P3.0 RXD B0h Receive data for serial port
P3.1 TXD B1h Transmit data for serial port
P3.2 INT0 B2h External interrupt 0
P3.3 INT1 B3h External interrupt 1
P3.4 T0 B4h Timer/counter 0 external input
P3.5 T1 B5h Timer/counter 1 external input
P3.6 WR B6h External data memory write strobe
P3.7 RD B7h External data memory read strobe
P3.0 RXD B0h Receive data for serial port
P3.1 TXD B1h Transmit data for serial port
P3.2 INT0 B2h External interrupt 0
P3.3 INT1 B3h External interrupt 1
P3.4 T0 B4h Timer/counter 0 external input
P3.5 T1 B5h Timer/counter 1 external input
P3.6 WR B6h External data memory write strobe
P3.7 RD B7h External data memory read strobe
PSEN (Program Store Enable)
adalah sebuah sinyal keluaran yang terdapat
pada pin 29. Fungsinya adalah sebagai sinyal kontrol untuk memungkinkan
mikrokontroler membaca program (code) dari memori eksternal. Biasanya
pin ini dihubungkan ke pin EPROM. Jika eksekusi program dari ROM
internal atau dari flash memori (ATMEL AT89SXX), maka berada pada
kondisi tidak aktif (high).
ALE (Address Latch Enable)
Sinyal output ALE yang berada pada pin 30 fungsinya sama dengan ALE pada microprocessor INTEL 8085, 8088 atau 8086. Sinyal ALE dipergunakan untuk demultiplek bus alamat dan bus data. Sinyal ALE membangkitkan pulsa sebesar 1/6 frekuensi oscillator dan dapat dipakai sebagai clock yang dapat dipergunakan secara umum.
Sinyal output ALE yang berada pada pin 30 fungsinya sama dengan ALE pada microprocessor INTEL 8085, 8088 atau 8086. Sinyal ALE dipergunakan untuk demultiplek bus alamat dan bus data. Sinyal ALE membangkitkan pulsa sebesar 1/6 frekuensi oscillator dan dapat dipakai sebagai clock yang dapat dipergunakan secara umum.
EA(External Access)
Masukan sinyal terdapat pada pin 31 yang dapat diberikan logika rendah (ground) atau logika tinggi (+5V). Jika diberikan logika tinggi maka mikrokontroler akan mengakses program dari ROM internal (EPROM/flash memori). Jika diberi logika rendah maka mikrokontroler akan mengakses program dari memori eksternal.
Masukan sinyal terdapat pada pin 31 yang dapat diberikan logika rendah (ground) atau logika tinggi (+5V). Jika diberikan logika tinggi maka mikrokontroler akan mengakses program dari ROM internal (EPROM/flash memori). Jika diberi logika rendah maka mikrokontroler akan mengakses program dari memori eksternal.
RST (Reset)
Input reset pada pin 9 adalah reset master untuk AT89S51. Pulsa transisi dari tinggi selama 2 siklus ke rendah akan mereset mikrokontroler.
Input reset pada pin 9 adalah reset master untuk AT89S51. Pulsa transisi dari tinggi selama 2 siklus ke rendah akan mereset mikrokontroler.
Oscillator
Oscillator yang disediakan pada chip dikemudikan dengan XTAL yang dihubungkan pada pin 18 dan pin 19. Diperlukan kapasitor penstabil sebesar 30 pF. Besar nilai XTAL sekitar 3 MHz sampai 33 MHz. XTAL1 adalah input ke pembalikan penguat osilator (inverting oscillator amplifier) dan input ke clock internal pengoperasian rangkaian. Sedangkan XTAL2 adalah output dari pembalikan penguat osilator.
Oscillator yang disediakan pada chip dikemudikan dengan XTAL yang dihubungkan pada pin 18 dan pin 19. Diperlukan kapasitor penstabil sebesar 30 pF. Besar nilai XTAL sekitar 3 MHz sampai 33 MHz. XTAL1 adalah input ke pembalikan penguat osilator (inverting oscillator amplifier) dan input ke clock internal pengoperasian rangkaian. Sedangkan XTAL2 adalah output dari pembalikan penguat osilator.
Gambar 1.3. Konfigurasi Xtal Osilator
PowerAT89S51 dioperasikan pada tegangan supply +5v, pin Vcc berada pada nomor 40 dan Vss (ground) pada pin 20.
Organisasi Memori
a. Pemisahan Memori Program dan Data
Semua divais 8051 mempunyai ruang alamat yang terpisah untuk memori program dan memori data, seperti yang ditunjukkan pada gambar1.1. dan gambar 1.2. Pemisahan secara logika dari memori program dan data, mengijinkan memori data untuk diakses dengan pengalamatan 8 bit, yang dengan cepat dapat disimpan dan dimanipulasi dengan CPU 8 bit. Selain itu, pengalamatan memori data 16 bit dapat juga dibangkitkan melalui register DPTR. Memori program ( ROM, EPROM dan FLASH ) hanya dapat dibaca, tidak ditulis. Memori program dapat mencapai sampai 64K byte. Pada 89S51, 4K byte memori program terdapat didalam chip. Untuk membaca memori program eksternal mikrokontroller mengirim sinyal PSEN ( program store enable ) . Memori data ( RAM ) menempati ruang alamat yang terpisah dari memori program. Pada keluarga 8051, 128 byte terendah dari memori data, berada didalam chip. RAM eksternal (maksimal 64K byte). Dalam pengaksesan RAM Eksternal, mikrokontroller mingirimkan sinyal RD ( baca ) dan WR ( tulis ).
Gambar 1.4. Struktur memori mikrokontroler keluarga MCS51
Gambar 1.5. Arsitektur Memori Mikrokontroller 8051
b. Memori Program
Gambar 1.5. menunjukkan suatu peta bagian bawah dari memori program. Setelah reset CPU mulai melakukan eksekusi dari lokasi 0000H. Sebagaimana yang ditunjukkan pada gambar 1.6, setiap interupsi ditempatkan pada suatu lokasi tertentu pada memori program. Interupsi menyebabkan CPU untuk melompat ke lokasi dimana harus dilakukan suatu layanan tertentu. Interupsi Eksternal 0, sebagi contoh, menempatai lokasi 0003H. Jika Interupsi Eksternal 0 akan digunakan, maka layanan rutin harus dimulai pada lokasi 0003H. Jika interupsi ini tidak digunakan, lokasi layanan ini dapat digunakan untuk berbagai keperluan sebagai Memori Program.
Gambar 1.5. menunjukkan suatu peta bagian bawah dari memori program. Setelah reset CPU mulai melakukan eksekusi dari lokasi 0000H. Sebagaimana yang ditunjukkan pada gambar 1.6, setiap interupsi ditempatkan pada suatu lokasi tertentu pada memori program. Interupsi menyebabkan CPU untuk melompat ke lokasi dimana harus dilakukan suatu layanan tertentu. Interupsi Eksternal 0, sebagi contoh, menempatai lokasi 0003H. Jika Interupsi Eksternal 0 akan digunakan, maka layanan rutin harus dimulai pada lokasi 0003H. Jika interupsi ini tidak digunakan, lokasi layanan ini dapat digunakan untuk berbagai keperluan sebagai Memori Program.
Gambar 1.6. Peta Interupsi mikrokontroller 8051
c. Memori DataPada gambar 1.7. menunjukkan ruang memori data internal dan eksternal pada keluarga 8051. CPU membangkitkan sinyal RD dan WR yang diperlukan selama akses RAM eksternal. Memori data internal terpetakan seperti pada gambar 1.7. Ruang memori dibagi menjadi tiga blok, yang diacukan sebagai 128 byte lower, 128 byte upper dan ruang SFR. Alamat memori data internal selalu mempunyai lebar data satu byte. Pengalamatan langsung diatas 7Fh akan mengakses satu alamat memori, dan pengalamatan tak langsung diatas 7Fh akan mengakses satu alamat yang berbeda. Demikianlah pada gambar 1.7 menunjukkan 128 byte bagian atas dan ruang SFR menempati blok alamat yang sama, yaitu 80h sampai dengan FFh, yang sebenarnya mereka terpisah secara fisik
128 byte RAM bagian bawah dikelompokkan lagi menjadi beberapa blok, seperti yang ditunjukkan pada gambar 8. 32 byte RAM paling bawah, dikelompokkan menjadi 4 bank yang masing-masing terdiri dari 8 register. Instruksi program untuk memanggil register-register ini dinamai sebagai R0 sampai dengan R7. Dua bit pada Program Status Word (PSW) dapat memilih register bank mana yang akan digunakan. Penggunaan register R0 sampai dengan R7 ini akan membuat pemrograman lebih efisien dan singkat, bila dibandingkan pengalamatan secara langsung.
Gambar 1.7. Memori data internal
Gambar 1.8. RAM internal 128 byte paling bawah
Semua pada lokasi RAM 128 byte paling bawah dapat diakses baik dengan
menggunakan pengalamatan langsung dan tak langsung. 128 byte paling
atas hanya dapat diakses dengan cara tak langsung, gambar 1.9.
Gambar 1.9. RAM internal 128 byte paling atas
d. Special Function RegisterSebuah peta memori yang disebut ruang special function register ( SFR ) ditunjukkan pada gambar berikut. Perhatikan bahwa tidak semua alamat-alamat tersebut ditempati, dan alamat-alamat yang tak ditempati tidak diperkenankan untuk diimplementasikan. Akses baca untuk alamat ini akan menghasilkan data random, dan akses tulis akan menghasilkan efek yang tak jelas.
e. Accumulator
ACC adalah register akumulator. Mnemonik untuk instruksi spesifik akumulator ini secara sederhana dapat disingkat sebagai A.
f. Register
Register B digunakan pada saat opersi perkalian dan pembagian. Selain untuk keperluan tersebut diatas, register ini dapat digunakan untuk register bebas.
g. Program Status Word.
Register PSW terdiri dari informasi status dari program .
h. Stack Pointer
Register Pointer stack mempunyai lebar data 8 bit. Register ini akan bertambah sebelum data disimpan selama eksekusi push dan call. Sementara stack dapat berada disembarang tempat RAM. Pointer stack diawali di alamat 07h setelah reset. Hal ini menyebabkan stack untuk memulai pada lokasi 08h.
i. Data Pointer
Pointer Data (DPTR) terdiri dari byte atas (DPH) dan byte bawah (DPL). Fungsi ini ditujukan untuk menyimpan data 16 bit. Dapat dimanipulasi sebagai register 16 bit atau dua 8 bit register yang berdiri sendiri.
Gambar 1.10. Pemetaan Data Pointer.
Tidak ada komentar:
Posting Komentar